
Audio Indexing for Efficient Music Information Retrieval ∗

Ioannis Karydis, Alexandros Nanopoulos, Apostolos N. Papadopoulos and Yannis Manolopoulos

Data Engineering Lab., Department of Informatics
Aristotle University, 54124, Thessaloniki, GREECE

E-mail:{karydis,alex,apostol,manolopo }@delab.csd.auth.gr

Abstract

This paper presents an algorithm that efficiently retrieves
audio data similar to an audio query. The proposed method
utilises a feature extraction method for acoustical music se-
quences. The extracted features are grouped by Minimum
Bounding Rectangles (MBRs) and indexed by means of a
spatial access method. We also present a novel false alarm
resolution method that utilises a reverse order schema while
calculating the distance of the query and results, in or-
der to avoid costly operations. Performance evaluation re-
sults show that the proposed technique achieves consider-
able performance improvement in comparison to an exist-
ing method.

1 Introduction

The spread of digitized music as well as the development
of digital music libraries gives impulse to the utilisation of
retrieval methods other than the traditional metadata (title,
composer, performer, genre, date, etc.) of a music object.
As these information are not the music content itself but sec-
ondary features, content-based music information retrieval
has greatly developed in recent years. Although, music re-
trieval based on humming is the most natural and sponta-
neous content-based music retrieval, retrieval can also be
performed by providing a query music file or even by cre-
ating a query using a keyboard. Generally, content-based
music retrieval requires an actual music piece in order to
compare its content with the content of the music pieces
already available in a database. The freedom of origin of
the query object introduces the need for similarity search-
ing due to possible errors in the query. In addition, the use
of similarity searching is also underlined by the trend that
songs are developed based on the variation of an original
theme.

∗This research is supported by the IRAKLITOS national program
(2003-2005) funded by EPEAEK framework

One of the main challenges in Music Information Re-
trieval (MIR) is the choice of representation of the musical
information within the system. A music object should be
described by a set of its features. Numerous approaches
exist on what features to retain and on how to select these
features [19]. Music representation and consequently the
feature selection can primarily be separated in two classes:
the symbolic representation (MIDI format) and the acoustic
representation (audio format - wav, mp3).

In the symbolic representation area, the MIDI represen-
tation is quite a common selection, while the set of features
ranges from pitch [7], rhythm [2], changes in pitch [6] or
even rhythm and pitch [21]. Recent research proposed that
features could be represented in string format and accord-
ingly presented string indices [8], [21], [2], [11]. Though,
these approaches are not easily adopted for multiple fea-
tures, lack data scalability for large music data [21] and gen-
erally string matching proves slower than numeric match-
ing [10]. In order to address these inefficiencies [10] pro-
posed a multi-feature numeric indexing structure that trans-
forms music feature strings into numeric values.

As far as the acoustic representation is concerned the
most common features are produced by time analysis([13],
[14]), spectral analysis([13], [14], [9]) and wavelet anal-
ysis [18]. The coefficients collected from each of these
analyses can be indexed in TV-Trees [17], locality-sensitive
hashing schemes [22], S-Indexes [3]. In addition, [16] com-
pares four different multidimensional indexing schemes for
music data, the KD-Tree, the K-Tree, the Multidimensional
Quick-sort and the Box Assisted Method. The authors con-
clude that KD-Tree is significantly more efficient than the
other methods, especially for high-dimensional data. Fi-
nally, the authors in [20] utilise an M-Tree in which a se-
lection of features is stored, claiming thus a 65% gain in
space requirements.

In this paper, we focus on the problem of searching sim-
ilar subsequences in music audio data using as features the
first few DFT coefficients of the audio file (sequence). The
resulting coefficients are stored in a spatial access structure

to decrease retrieval time. Key differences of audio data in
comparison to existing approaches (mainly from the field of
time-series analysis) require better testing as well as differ-
entiated methods. For example, in common time-series ap-
plications, like stock-market analysis, query sequences have
relatively short lengths, e.g., less than 1,000 elements. For
music sequences, even in down-sampled raw audio files, a
query would include at least three seconds thus producing a
query sequence of approximately 60,000 elements. It is ap-
parent thus, that the false alarm resolution of such a query
could be computationally expensive. Moreover, compared
to existing approaches in indexing music sequences for sim-
ilarity searching, we are interested in an approach that will
allow direct implementation in existing DBMSs. For this
reason, we utilise index structures from the R-tree family,
which have been implemented in several commercial and
open-software DBMSs, e.g., Oracle and Postgres.

The technical contributions of this paper are summarised
as follows:

• The development of a novel algorithm that efficiently
retrieves audio data similar to an audio query. The pro-
posed algorithm addresses the characteristics that re-
sult from the nature of the examined problem, i.e., fac-
tors like the increased size of the sequences handled
(as mentioned, such factors do not appear in work in
related fields like the similarity search in time-series).

• The detailed experimental results which show the effi-
ciency of the proposed algorithm and the performance
gains compared to an existing baseline algorithm [4].

The rest of the paper is organized as follows. Section 2
describes related work. Section 3 provides a complete ac-
count of the algorithm proposed in this paper. Additionally,
Section 4 presents an efficient algorithm for false-alarm res-
olution. Subsequently, Section 5 presents and discusses the
experimentation and results obtained. Finally, the paper is
concluded in Section 6.

2 Related work

2.1 CBMIR Systems

Current related work on acoustic data - acoustic query
Content-Based Music Information Retrieval (CBMIR) sys-
tems is rather limited. The author in [22] propose a spectral
indexing algorithm for CBMIR. Its feature-extraction pro-
cess attempts to identify distinctive notes or rhythmic pat-
terns. The features are used to construct “characteristic se-
quences”, which in the next step are indexed in a probabilis-
tic scheme, the Locality-Sensitive Hashing (LSH). The LSH
scheme allows both false positive and negative matches, that
are compensated in a later step based on the uniformity in

time of music tempo changes. Experimental results indi-
cate high retrieval accuracy for different similarity types. In
[20], the authors propose a CBMIR system that is mainly
oriented towards servicing different types of queries. The
acceptable query types include audio files, common mu-
sic notation as well as Query-By-Humming (QBH). The
MIDI format is used as an intermediate music object rep-
resentation. The selection of features is called “represen-
tative melody” and is register into an M-tree structure, in
which melodies are inserted based on their average length
and pitch variation together with melody signatures repre-
senting the variation pattern. The used distance is a time-
wrapping function. Preliminary results indicate 65% gain
in space requirements when using the collection of features
instead of the whole melodies.

As far as the work in [20] is concerned, it’s main disad-
vantage is the assumption that the users’ query must include
at least one of the parts that they gather in order to cre-
ate the “representative melodies”. And as this might work
for QBH, it might not for a random piece of a music file
included in the index, especially for a small one. In addi-
tion, polyphonic music transcription is known to be very
hard and poor performing([22], [15]). Regarding the work
in [22], its feature selection mechanism is oriented towards
identifying different types of similarity in music pairs. Ad-
ditionally, the selected features can lead to false negatives,
which have to be addressed in a post-processing step. Fi-
nally, [22] uses a specialized indexing mechanism. In con-
trast, we focus on a much simpler, but useful, model for
searching similar subsequences, which is based on existing
work on time-series analysis. Our approach does not intro-
duce false negatives, according to the used similarity model,
and, more importantly, it uses general purpose indexes (R-
trees), which allow for a direct implementation in existing
RDBMSs.

2.2 Multimedia Similarity Indexing

The GEneric Multimedia object INdexIng (GEMINI) ap-
proach [5] consists of a feature extraction function to map
objects into points inf -dimensional space. Accordingly, a
Spatial Access Method (SAM) method is used to accelerate
search. The GEMINI approach is based on the following
three key issues: (i) a fast, possibly allowing false alarms
test, to discard the majority of non-qualifying objects, (ii)
the use of a SAM to improve search performance, and (iii)
the use of a false alarm resolution method.

One of the most popular spectral analysis for time se-
quences is based on the Discrete Fourier Transform (DFT).
Retaining the first few coefficients as features leads to
a truncation that under-estimates the distance of the se-
quences, thus introducing no false dismissals [4]. The pop-
ularity of this approach emerges from the fact that most real

sequences fall in the class of random walks, and colored
noise in particular. For this kind of random walks, the first
few coefficients of the DFT transform contain most of the
energy of the sequence. This phenomenon is quite appar-
ent in stock sequences, which can be considered as brown
noise. Interestingly enough, it has been reported that it also
holds for signals like audio data, which can be characterized
as pink noise [4]. However, none of the existing approaches
exploites the aforementioned issue.

Compared to the method proposed in [4], our approach
differs in the following issues. Query sequences may have
large lengths compared to the ones used in time-series data
and stock-market sequences, that were examined in [4]. For
this purpose, we developed a different mechanism for re-
solving false alarms, which takes into account the afore-
mentioned factor. Moreover, [4] focuses on the indexing of
one or some few sequences. In our approach, we index a
database which may contain a large number of music se-
quences.

3 The Proposed Method

In this section we define the problem addressed by this
research and present the proposed method in terms of the
feature selection and extraction as well as the spatial access
method utilised.

3.1 Problem statement

The problem definition is as follows: LetD be a collec-
tion of n musical sequences, i.e.,D = {Di}, 1 ≤ i ≤ n.
Given a musical sequenceQ, find all Di ∈ D where each
such Di contains at least one subsequenceSj of length
|Sj | = |Q| and ||Sj − Q|| ≤ ε (ε is user-defined). We
use the Euclidean distance between ofQ andSj .

Example. Let the collection of sequencesD be the one
depicted in Figure 1, containing three music sequences. For
a given query subsequenceQ (also depicted in the figure)
and forε =

√
5, we find a match inD1. The corresponding

subsequence is depicted within a solid rectangle. Notice
that D1 also contains another subsequence of length three
(the one with elements 23, 17, and 31), which matchesQ.
However, since we need only to report thatD1 contains a
match, the first found match suffices. 2

It should be noted that in this work, to obtain musical
sequences, wav audio files are used. Initially, the files are
down-sampled to 22050 Hz, transformed to single-channel
audio and 8-bit representation of each sample. Then their
header is removed in order to retain only the audio infor-
mation part. Thus, we consider a musical sequence to be a

D1: 0 0 12 25 18 32 12 23 17 31

D2: 0 1 13 12 28 35 19 58 92 14

D3: 2 5 67 96 55 44 28 128 116 35

Q: 24 16 32

Figure 1. Example of subsequence similarity
matching.

sequence of integers ranging from 0 to 255, that describes
the signal amplitude of the music file.

3.2 Feature Extraction

The selection of appropriate features is considered very
important in multimedia information retrieval. Meaningful
features help in the effective representation of the objects
and enable the use of indexing schemes for efficient query
processing.

We apply the feature extraction process proposed in [4],
since the problem we are dealing with is similar to sub-
sequence matching in time-series. Therefore, the original
audio sequence is transformed to a number of multidimen-
sional points by applying a sliding window to the audio data
and by applying the Discrete Fourier Transform (DFT) to
each part. Therefore, each audio sequence produces a set of
multi-dimensional points. The dimensionality of the trans-
formed space depends on the number of DFT coefficients
that will be used for the representation. By keeping the first
few DFT coefficients the size of the original audio sequence
is reduced significantly. Moreover, much of the audio se-
quence energy is concentrated in the first few DFT coeffi-
cients [4] and therefore adequate representation is achieved.

0 0 12 25 18 32 12 23 17 31

p1

p2

p3

p4

p5

p6

x

y

z

p'1

p'2

p'3

p'4 p'5
p'6

(a) original space (b) transformed space

Figure 2. Feature extraction process.

An example of the aforementioned transformation tech-
nique is illustrated in Figure 2. A sliding window of size
five is applied to the original audio sequence. Each pointpi

defined by the sliding window is transformed to a pointp′i

in the 3-d space by applying the DFT and keeping only the
first coefficients of the transformation. It has been proved
in [4] that no false dismissals are introduced by using this
transformation technique, due to the fact that the distance
in the transformed space is lower-bounded. However, false
alarms are possible and they must be resolved. The false
alarm resolution method is analysed in Section 4.

3.3 Indexing

The audio representation illustrated in the previous sec-
tion cannot guarantee efficient query processing. There-
fore, the transformed audio sequences must be organized by
means of an indexing scheme, towards increased processing
efficiency.

Due to the fact that each audio sequence is represented
by a set of multi-dimensional points, a multi-dimensional
access method can be used to organize the data. How-
ever, indexing directly the multi-dimensional points will
lead to huge storage consumption because each audio se-
quence can generate thousands of multi-dimensional points.
To attack the problem we apply an approach similar to
the one proposed in [4] which performs a grouping of the
multi-dimensional points to minimum bounding rectangles.
Therefore, we take advantage of the fact that consecutive
multi-dimensional points are expected to be close in the
transformed space. An example of the packing process is
illustrated in Figure 3.

R*-tree

MBR 1

MBR 2

Figure 3. Packing and indexing scheme.

The number of produced Minimum Bounding Rectan-
gles (MBRs) is significantly less than the number of multi-
dimensional points. Therefore, MBRs can be organized by
means of an R∗-tree [1] or any other multi-dimensional ac-
cess method. We focus on the R∗-tree access method be-
cause it has been consistently used in many applications and
has been already implemented by commercial database ven-
dors.

3.4 Similarity Range Search

The user query is composed of a query audio sequenceQ
and a distance thresholde. The similarity query processing

method is composed of three major steps which are briefly
described in the sequel:

Step 1: The query audio sequenceQ is transformed by
means of the aforementioned transformation tech-
nique. If Q is larger than the sliding window sizew,
then it is split tok partsq1, q2, ...,qk, wherek = d |Q|w e.

Step 2: The query parts determined in the previous step are
used to search the R∗-tree index. The result of this step
is a set of audio sequences thatmay satisfythe query
constraints.

Step 3: The last step involves the refinement of the answers
returned by the index. This is performed by a novel
false alarm resolution algorithm which is studied in de-
tail in the subsequent section.

4 False Alarm Resolution

To resolve a false alarm, we must retrieve the cor-
responding subsequence and examine its actual distance
against the query sequence. The algorithm in [4] uses
a direct false-alarm resolution mechanism. Whenever an
MBR is found to satisfy the range query, its subsequence
is fetched and examined against the query sequence. For
the context examined by our approach, the aforementioned
method is inefficient due to two reasons:

i. Query sequences are much larger compared to the ones
in the context of [4] (stock-market data). Therefore,
the cost of naively resolving each false alarm can be-
come the bottleneck of the entire searching operation.

ii. In [4] only one data sequence is examined, whereas
we handle many music sequences. If we used the di-
rect approach of [4], the music sequences would be ex-
amined in random order (the one that the range query
produces), resulting to a scattering effect while access-
ing disk pages that contain the sequences. No local-
ity in access will be preserved and a buffer cannot be
utilised effectively (a phenomenon that in database ter-
minology is called thrashing).

To overcome the latter issue (ii), we do not directly ex-
amine each possible match. Instead, we collect informa-
tion for all possible matches (namely, the starting and end-
ing position of each corresponding subsequence and the ID
of the music sequence from which the subsequence origi-
nates). Then, we resolve false alarms in a post-processing
step, by first grouping the possible matches for each music
sequence separately, and by sorting in each group the ranges
according to their starting positions. With this method, we
try to avoid the random scattering when accessing the music
sequences.

To address the former issue (i), we propose the examina-
tion of pages in a reverse order when resolving a false alarm.
For instance, assume that we have to resolve a false alarm
generated from an MBR that corresponds to subsequences
in the range[l, r]. For each positionl ≤ i ≤ r, there may
exist a subsequence of length|Q| that matches the query
sequenceQ. Even if the range[l, r] is relatively small, the
fact that we have to examine subsequences of a very large
length |Q|, produces the problem that we have to address.
A straightforward approach would examine all these sub-
sequences and report those that produce a match. A trivial
optimization is to terminate the examination of each sub-
sequence at the moment that the actual distance becomes
greater than the user-defined threshold of similarity (since
the examination of the rest of the subsequence cannot re-
duce the distance). However, this results only into CPU
time savings. I/O is not reduced, because all subsequences
starting at all positionl ≤ i ≤ r have to be examined. Since
each such subsequence is of length|Q|, a large number of
disk pages have to be fetched.

The reverse-order examination scheme works as follows.
When we have to examine a subsequence that starts at posi-
tion i in its corresponding sequenceDc, we do not fetch the
page containing this first element. Instead, we find the page
(denoted asR) that contains the last element that has to be
examined, that is, the|Q|+ i− 1 element ofDc. Then, we
first examine the partial distance between elements ofR and
the corresponding elements inQ, which is properly aligned
so as if it is examined against the subsequence starting at
position i. If the partial distance is larger than the user-
definedε, then we do not examine the rest elements of the
subsequence. By moving to the next position, i.e.,i+1, we
can still first examine the partial distance between the cor-
responding elements inQ and the ones of the subsequence
starting at positioni + 1. Thus, we avoid reading another
page, as long as we examine subsequences that contain ele-
ments stored inR. In case the partial distance is not greater
thanε, then we have a partial match. We fetch the page that
contains the first position of the currently examined subse-
quence and we compute the actual distance betweenQ and
the subsequence, until a full match is found or the computed
distance exceedsε. Assuming that each disk page can store
N elements, we use a buffer than can holdd|Q|/Ne pages,
so as to avoid re-reading the intermediate pages.1 Conclu-
sively, in case of a full match, all intermediate pages are
read (a fact that cannot be avoided), whereas in other cases
a large number of page reads can be avoided, leading to sig-
nificant savings in I/O time.

Before presenting the algorithm, we note the following.
Assume that we must examine the subsequence that starts

1For fair comparison, we also provide the same buffer to the method
of [4]. Also, we use for it the trivial optimization of early termination of
distance calculation.

at positioni in sequenceDc. Also assume a numbering
of pages inDc: the first one has ID 0 and the final one
b|Dc|/Nc. Then, the page that contains the last element has
ID (denoted as rpID) equal tob i+|Q|−1

N c. The offset of the
first element in this last page is denoted asf and is equal to
rpID ×N . By using these notations, Figure 4 illustrates the
alignment ofQ when testing a partial match. The elements
involved in the calculation of the partial distance are shown
in gray color.

i …… …

0

f

f-i

|Q|+i-1Dc

Q

Figure 4. Example of partial matching using
the reverse page scheme.

Now we move on to describe the algorithm that resolves
false alarms, which is given by procedure RFA (Resolve
False Alarms) in Figure 5. RFA operates within a loop that
examines all positionsl ≤ i ≤ r, where[l, r] is the range
that needs to be examined. The decision whether to com-
pute the partial distance or to proceed in a normal distance
calculation is determined by the value of variable rMode
(stands for reverse mode). Whenever a partial match is
found, rMode becomes true (it becomes again false, when
a normal match fails). During the calculation of partial or
normal distances, elements ofDc sequence have to be ex-
amined. The algorithm examines when a new page has to
be fetched, since these elements may be stored in several
contiguous pages. Notice that fetching is done through a
buffer with |Q|/N pages, so as to avoid re-reading of the
same pages when it is not necessary.

5 Performance Evaluation

In support of the efficiency of the proposed algorithm,
this section presents a number of experiments that have
been performed. A concise description of the experimen-
tation platform and data sets is also given followed by a
performance analysis based on experimental comparison of
the baseline approach, i.e., the ST-Index [4], and the pro-
posed approach, the MS-Index (stands for Music Subse-
quence match Index).

All algorithms described have been implemented and
performed on a personal computer with 3.01GHz Intel Pen-
tium IV processor, 1GByte RAM, operating system MS
Windows XP, while the developing package utilised was
MS Visual C++ version 6. The performance measure was

procedureRFA(Dc, l, r, Q, ε, N , wSize)
begin

forceRead =false, rMode =true
rpID = b i+|Q|−1

N
c

f = rpID×N

for (i = l ; i < min{r, |Di| − |Q|}; i++)
if (forceRead ==true)

/*a partial match was found earlier in reverse page*/
fetch page that contains thei-th element ofDc

forceRead =false
else if(b i

N
c == rpID)

/* rPID will be tested as a normal page*/
rMode =false

else if(b i
N
c > rpID)

/*a new reverse page must be found*/

rpID = b i+|Q|−1
N

c
f = rpID×N
rMode =true

if (rMode ==false)
s = 0
for (j = 0); j < |Q|; j + +)

fetch page containing the(i + j)-th element ofDc

s += (Dc[i + j]−Q[j])2

if (
√

s ≤ ε)
output match

else
rMode =true
forceRead =false

else
s′ = 0
for (j = 0; j < |Q| − f + i; j++)

s′ += (Dc[f + j]−Q[f − i + j])2

if (
√

s′ ≤ ε)
rMode =false
forceRead =true
i−− /*re-examine i-th element for full match*/

end

Figure 5. The algorithm that resolves false
alarms.

the wall-clock time measured in milliseconds.
The data sets employed for the experiments included

solely real music objects. Experiments have been conducted
on 300 audio files including more than 13 hours of music.
The audio files originated from CD-Audio that were ripped
in wav format. These music objects include classical works,
modern international pop, rock, instrumental music as well
as different types of Greek music. Queries were made by
retaining 1-10 seconds of the audio files included in the
database. Henceforth, for purposes of more clear represen-
tation, results illustrate the relative execution times between
the MS-index and ST-index.

In the first experiment we consider the retrieval time of
both approaches with relation to the window size of the DFT
procedure. The DFT window is a sliding window placed on

every offset of the original music sequence, while for each
such placement the first three DFT coefficients are kept.
The vector of DFT coefficients is then fed to the MBR cre-
ation unit. The results on (relative) execution time are illus-
trated in Figure 6.

0

5

10

15

20

25

30

35

40 60 80 100 120 140 160 180 200 220

tim
e

(r
el

at
iv

e)

window size (x1000)

ST-Index
MS-Index

Figure 6. Relative retrieval time for different
DFT window sizes

Considering the absolute times, we would notice that as
expected, the execution time for both algorithms decreases
with increasing window sizes. This is due to two factors.
First of all, by increasing the window size, we achieve a re-
duction in the size of each DFT coefficient sequence, and
for mean size of the MBRs, we obtain less MBRs. Thus,
the index performance is ameliorated, reducing the CPU
cost. In addition, there are much fewer candidates that the
false alarm resolution needs to process, thus reducing the
I/O cost.

However, focusing on the relative execution times (Fig-
ure 6), we notice that the results for ST-Index are tunable
with respect to the window size. Within the limits tested the
worse performance was achieved forw = 80, 000, while for
standard value used in all other comparative experiments
(w = 220, 000) its performance is very close to the best
received. Nevertheless, MS-Index clearly outperforms the
ST-Index by a factor of more than 8, while in some cases
the difference is even more than 30.

In our next experiment we study the retrieval time of both
approaches with relation to the different values of thep pa-
rameter. Thep parameter corresponds to the estimated size
of the range query. The results are depicted in Figure 7.

We have to notice that both methods perform better for
increasedp and large query size. This is mainly due to
the fact that for higherp less MBRs are created, that is we
obtain lengthier sub-trails within each MBR. Accordingly,
the MBRs are better located in the feature space with less
overlapping. This leads more efficient range query results
and significantly fewer candidates to be resolved in each

0

2

4

6

8

10

12

14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e

(r
el

at
iv

e)

p

ST-Index
MS-Index

Figure 7. Relative retrieval time for different
values of the p parameter

false alarm resolution, thus significantly reducing the I/O
cost. However, considering the relative performance of both
methods, we see that MS-Index proves to be significantly
better, especially for greaterp.

Figure 8 presents the third experiment, were we study the
relative retrieval time for different query sizes. The query
size is measured in seconds and since the window size of the
DFT cannot be greater than the size of the query sequence,
we have also varied the window size proportionally. Should
the DFT window size had been left unaffected, then the re-
sult would be misleading as its small size would produce a
large number of sub-queries, that would increase the time of
larger queries. As previously, the performance of the MS-
Index is at least 4 times better than the ST-Index, while for
greater queries becomes almost 9 times faster. The rela-
tive superiority of the MS-Index is due to the fact the larger
query size uses larger DFT window and the reverse order
schema becomes more effective by pruning more interme-
diate pages.

In the final experiment, we examine the relative retrieval
time for different query range sizes (user-definedε param-
eter). The results are given in Figure 9 (notice that the ver-
tical axis is in logarithmic scale). In this case, as range in-
creases, the number of hits returned requiring false alarm
resolution increases. Accordingly, the number of false
alarms increases. The ST-Index, by resolving each hit di-
rectly, does not take full advantage of the buffering scheme
available. This is due to the absence of locality within files,
on which the buffer relies. On the other hand, the MS-Index
resolves hits for each file separately by accumulating them.
Thus, the locality within the buffer is preserved.

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10

tim
e

(r
el

at
iv

e)

query size (sec)

ST-Index
MS-Index

Figure 8. Relative retrieval time for different
query sizes.

1

10

100

1 2 3 4 5

tim
e

(r
el

at
iv

e)

range distance

ST-Index
MS-Index

Figure 9. Relative retrieval time for different
query range sizes.

6 Conclusions

We have presented a feature extraction method for acous-
tical music sequences. The extracted features are grouped
by Minimum Bounding Rectangles (MBRs) and indexed by
means of a spatial access method. Given a range query and
some results, we have presented a false alarm resolution
method that utilises a reverse order schema while calculat-
ing the Euclidean distance of the query and results, in order
to avoid costly calculations. Comparative evaluation to an
already existing algorithm showed significantly reduction in
execution times.

Further work could be oriented towards the fine-tuning
of the various parameters used by the algorithm, in order to
achieve maximum efficiency. Additionally, further refine-
ment could be applied to the feature extraction method as
well as the sub-sequence matching technique, by applying
the methods proposed in [12]. More advanced signal meth-

ods could lead to more musically meaningful representation
of the music sequence, increasing thus, the performance at
the level of the results returned from the SAM.

Currently, the proposed method supports only range
searches, thus an interesting future work is the inclusion
of nearest-neighbor searching. Finally, the method could
benefit from a ranking system that would classify the true
results of ak-NN search according to their similarity to the
query, thus allowing search for similarity in different ver-
sions of the same audio sequence.

References

[1] N. Beckmann, H.P. Kriegel and B. Seeger: “The R∗-
tree: an Efficient and Robust Method for Points and
Rectangles”,Proceedings of the ACM International
Conference on Management of Data (SIGMOD’90),
pp.322-331, Atlantic City, NJ, 1990.

[2] J.C. C. Chen and A.L.P. Chen: “Query by Rhythm
An Approach for Song retrieval in Music Databases”,
Workshop Research Issues in Data Engineering,
pp.139-146, 1998.

[3] D. Dervos, P. Linardis and Y. Manolopoulos: “S-
index: a Hybrid Structure for Text Retrieval”,Pro-
ceedings ADBIS, pp.204-209, 1997.

[4] C. Faloutsos, M. Ranganathan and Y. Manolopoulos:
“Fast subsequence matching in time-series databases”,
Proceedings of the ACM SIGMOD international con-
ference on Management of data, pp.419-429, 1994.

[5] C. Faloutsos: “Searching Multimedia Databases by
Content”, Kluwer Academic Publishers, 1996.

[6] A. Ghias, J. Logan, D. Chamberlin and B. C. Smith:
“Query by Humming: Musical Information Retrieval
in an Audio Database”,ACM Multimedia, pp.231-236,
1995.

[7] J.L. Hsu, C.C. Liu and A.L.P. Chen: “Discovering
Non-Trivial Repeating Patterns in Music Data”,IEEE
Transactions on Multimedia, Vol.3, No.3, pp.311-325,
2001.

[8] J. Hsu, C. Liu and A.L.P. Chen: “Efficient Repeat-
ing Pattern Finding in Music Databases”,Proceedings
ACM CIKM, 1998.

[9] B. Kostek and A. Wieczorkowska: “Parametric Rep-
resentation of Musical Sounds”,Archive of Acoustics,
pp.3-26, 1997.

[10] Y.L. Lo and S.J. Chen: “Multi-Featured Indexing for
Music data”,IEEE TICDCSW, 2003.

[11] C.C. Liu, J.L. Hsu and A.L.P. Chen: “An Apprixi-
mate string MAtching Algorithm for Content-Based
Music Data Retrieval”,IEEE Multimedia Computing
and Systems, pp.451-456, 1999.

[12] Y. Moon, K. Whang and W. Han: “A Subsequence
Matching Method in Time-Series Databases Based on
Generalized Windows”In Proc. ACM SIGMOD Int’l
Conf. on Management of Data, pp. 382-393, 2002.

[13] C. Papaodysseus, G. Roussopoulos, D. Fragoulis, Th.
Panagopoulos, C. Alexiou: “A new approach to the
automatic recognition of musical recordings”,Jounal
of Acoustical Engineering Society, Vol. 49, No 1/2,
pp.23-35, 2001.

[14] M. Paraskevas and J. Mourjopoulos: “A Statistical
Study of the Variability and Features of Audio Sig-
nals”,Audio Engineering Society, 1996.

[15] J. Pickens: “Harmonic Modeling for Polyphonic
Music Retrieval”, PhD Thesis, University of Mas-
sachusetts at Amherst, 2004.

[16] J. Reiss, J.-J. Aucouturier and M. Sandler: “Efficient
multidimensional searching routines for music infor-
mation retrieval”,2nd ISMIR, pp.163-171, 2001.

[17] V. S. Subrahmanian: “Multimedia Database systems”,
Morgan Kaufmann Publishers, San Francisco, 1998.

[18] A. Wieczorkowska: “Musical Sound Classification
based on Wavelet Analysis”,Fundamenta Informati-
cae, Vol. 47, No. 1/2, pp.175-188, 2001.

[19] A. Wieczorkowska and Z. Ras: “Audio Content De-
scription in Sound Databases”,Web Intelligence: Re-
search and Development, pp.175-183, 2001.

[20] J.-Y. Won,J.-H. Lee, K. Ku, J. Park and Y.-S. Kim: “A
Content-Based Music Retrieval System Using Repre-
sentative Melody Index from Music Databases”,To
appear in ADBIS 2004, 2004.

[21] W. Lee and A. L. P. Chen: “Efficient Multi-Feature
Index Structures for Music Information Retrieval”,
SPIE, pp. 177-188, 2000.

[22] C. Yang: “Efficient Acoustic Index for Music Re-
trieval with Various Degrees of Similarity”.ACM Mul-
timedia, pp.584-591, 2002.

